IMPLEMENTING THE CC-USB
CONTROL MODULE FOR USE IN
CAMAC CRATES AT THE FERMILAB
TEST BEAM FACILITY

BY KAREN LIPA, SIST INTERN
AUG 8, 2012

L LLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

OUTLINE

= Background info

= Specific use: cosmic ray test stand
= Goals

= My Process

= (Questions

HARDWARE: CAMAC SYSTEM Slot number: from 1 to 25

"’5"-,1.1.‘

*examples on next slide

N, A, AND F

N A F | Function Data
0 . 16 | Write a 16-bit marker word into the output data stream 16
1..24 - * | Executes N(1..24) A(*) F(*) command on CAMAC data way | 16/24
25 0 0 | Read Firmware ID 32
25 1 0 | Read Global Mode 16
25 1 16 | Write Global Mode 16
25 2 0 | Read Delays 16
25 2 16 | Set Delays 16
25 3 0 | Read Scaler Readout Control 24
25 3 16 | Wnite Scaler Readout Control 24
25 4 0 | Read User LED Source Selector 32
25 - 16 | Write User LED Source Selector 32
25 5 0 | Read User NIM QOutput Source Selector 32
25 5 16 | Write User NIM Output Source Selector 32
25 6 0 | Read Source Selector for User Devices 32
25 6 16 | Write Source Selector for User Devices 32
25 7 0 [Read Tinung for Delay & Gate Generator A 32
25 7 16 | Write Timing for Delay & Gate Generator A 32
25 8 0 | Read Timing for Delay & Gate Generator B 32
25 8 16 | Write Timing for Delay & Gate Generator B 32
25 9 0 | Read LAM Mask 24
25 9 16 | Write LAM Mask 32
25 10 0 | Read CAMAC LAM (pseudo-register) 24
25 11 0 | Read Scaler A (pseudo-register) 32
25 12 0 [Read Scaler B (pseudo-register) 32
25 13 0 | Read Extended Delays Register 32

13 16 | Wnte Extended Delays Register 32
14 0 | Read USB Buffering Setup Register 32
14 16 | Write USB Buffering Setup Register 32
15 0 | Read Broadcast Map (notepad register) 24
- * | execute Broadcast A(*) F(*) on CAMAC dataway 16/24
= ** | Set Broad cast mask (3 sequential calls for 24 bit mask) 24
8 29 |CAMACZ -

9 29 |CAMACC -

9 24 | Set CAMACI -

9 26 | Clear CAMACI -

Read (F 0-7)
Write (F 16-23)
I: inhibit

Z: initialize

C: clear

HARDWARE: CC-USB

= Control module

= Transmits and receives
data to/from crate
modules

= Accessed by computer
via USB cable

= Newest type of control
module (others are
obsolete)

= Not previously
equipped for use at

e e
B 000004 I

-8

)

Teee

COSMIC RAY TEST STAND PROJECT

= Goal: to produce a reliable
means of testing new detectors

= Wire chambers - x- and y-plane
wires indicate location of
particles

= Scintillators and PMT’s omit
signal when particle travels
through (trigger)

HARDWARE

- e ',“‘
ot

CAMAC crates wg*
*Lots lying around, economical | S B

CC-USB

=CAMAC parallel bus is now
obsolete

Wire chambers,
scintillators, PMTs

HARDWARE: WIRE CHAMBERS

=X- and y-plane wires
indicate locations where
particles hit

*Sends a signal to card

cathode wire plane (‘HV)
/;»——- sense wire plane (0V)
cathode wire plane (-HV)

HARDWARE: SCINTILLATORS + PMT'S

* scindtillator (s n tl-tr). n. A substance that
glows when hit by high-energy particles or
phOtonS (www.freedictionary.com)

* Photomultiplier Scintillator

tubes: “multiply” Photomultiplier
result of scintillator

hit (emit electrical
signals)

THE SETUP

RACK Front View

I——e4.00—-'
——PHT[1] \
MWPC 1 E==N1 |
| |
MwWPC 2 [1]
Fe plate 1" ==
—— P12 |
MWPC 3 ——— 1] |
wre 4| CTEED RACK Top View |
—Tr3] T |

i 24.00 |

Fe bricks 26 * |

Fe plate 17

[:

PMT 4] =

under rack \
4 double unistruts 32° long
4 cdouble unistruts 30* long

THE SETUP: CAMAC CRATE

=l ecroy 3377 Time-to-Digital converter

= counts the time from a hit in the wire chamber until stop signal

=L ecroy 4301: encoding and readout
= sends out stop signal to all the TDCs

TEST PROCEDURE

Pulse generator: produces
mock STOP and hit signals

m TS 3084 RN L e onirs

®000oa

GOALS

= Software to support the use of the CC-USB control module
= Python wrapping (ease for user)

= Specifics relevant to cosmic ray project

STEPS | TOOK

Learn about Develop tests DAQ/readout
CAMAC (scripts) system

Module-
specific Hardware stuff
python classes

Test out
example code

System +
telescope
readout

Wrap in Develop basic
python python classes

PYTHON WRAPPING

All the benefits of Python With the power of Cl!
=Access to USB functions

= Ease of use (syntax)* * (examples)

= High level “speed

= Object-oriented

= Script-based (testing)

HOW TO WRAP A C FUNCTION
STEP 1: WRAPPER FUNCTION

= Functions (PyArg_ParseTuple and Py_BuildValue) take in
and return Python objects

= Within the wrapper function, call is made to C function
defined elsewhere

static PyObject *
spam system(PyObject *self, PyObject *args)
{

const char *command;

int sts:

if (!PyArg ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;

return Py BuildValue ("i", sts);

HOW TO WRAP A C FUNCTION
STEP 2: METHODS TABLE

= Defines the “nickname” that each function will be
called by

static PyMethodDef SpamMethods[] = {

{"system", spam system, METH VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */

HOW TO WRAP A C FUNCTION
STEP 3: INITIALIZATION FUNCTION

=Defines the name of the module to be called from
python

PyMODINIT FUNC
initspam(void)
{

(void) Py InitModule ("spam", SpamMethods):

}

STEPS | TOOK

(general)
DAQ/readout
system

Learn about Develop tests
CAMAC (scripts)

Module-
specific Hardware stuff
python classes

Test out
example code

System +
telescope
readout

Wrap in Develop basic
python python class

MY CONTRIBUTION: SOFTWARE

DAQ software (for multi-crate readout)
CAMAC Python Library I
CC-USB functional Python librarv I
CC-USB C library I
SCSI (coming soon) USB software
USB port

CC-USB

BIG MILESTONES

ACKNOWLEDGEMENTS

= Supervisor: Geoff Savage

= Mentors: Elliott McCrory, Jamieson Olsen
= Dianne Engram, SIST committee

= Dr.James Davenport

QUESTIONS?

